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Problems-Motivation

Risk Quantification

Optimization under uncertainty
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Challenges

Challenge I: High-dimensional parameter spaces
Intrinsic instabilities
Stochastic loads
Random parameters

Challenge II: Need for expensive models
Complex dynamics
Hard to isolate dynamical mechanisms
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The focus of this work

Goal: Develop sampling strategies appropriate for expensive
models and high-dimensional parameter spaces

Models in fluids: Navier-Stokes, NL Schrödinger, Euler
Critical region of parameters is unknown
Importance sampling based methods too expensive
Input-space PCA focuses on subspaces, not sufficient
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Risk Quantification: Problem setup

x ∈ Rm : Uncertain parameters; pdf: fx
y ∈ Rd : Output or quantities of interest; expensive to compute

Risk Quantification Problem: Compute the statistics of y with
the minimum number of experiments, i.e. input parameters

{x1, x2, ..., xN}
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A Bayesian approach

Employ a linear regression model with an input vector x of
length m that multiplies a coefficient vector A to produce an
output vector y of length d , with Gaussian noise added:

y = Ax + e (1)
e ∼ N (0,V) (2)

We are given a data set of pairs:

D = {(y1, x1), (y2, x2), ..., (yN , xN)}.

We set Y = [y1, y2, ..., yN ] and X = [x1, x2, ..., xN ].
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A Bayesian approach

From Bayesian regression, we obtain the pdf for new inputs x:

p(y|x,D,V) = N (SyxS−1
xx x,V(1 + c)),

c = xT S−1
xx x,

Sxx = XXT + K

Syx = YXT

Question: How to choose the next input point xN+1 = h?
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1. Minimizing the model uncertainty

Given a hypothetical input point xN+1 = h, we have at x

p(y|x,D′,V) = N (SyxS−1
xx x,V(1 + c)),

c = xT S′−1
xx x,

where S′
yxS′−1

xx x = SyxS−1
xx x, assuming yN+1 = SyxS−1

xx h.

We minimize the model uncertainty by choosing h such that the
distribution for c converges to zero (at least for the x we are
interested):

µc(h) = E[xT S′−1
xx x] = tr [S′−1

xx Cxx ] + µT
x S′−1

xx µx = tr [S′−1
xx Rxx ]

(valid for any fx )
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1. Minimizing the model uncertainty
Interpretation of the sampling process

1. The selection of the new sample does not depend on Y.

2. We diagonalize Rxx ; let x̂i , i = 1, ...,m be the principal
directions arranged according to the eigenvalues σ2

i + µ2
x̂i
.

To minimize

µc(h) = tr [S′−1
xx Rxx ] =

d!

i=1

(σ2
i + µ2

x̂i
)[S′−1

x̂ x̂ ]ii , h ∈ Sm−1,

we need to sample in directions with the largest σ2
i + µ2

x̂i
.

3. After sufficient sampling in this direction, the scheme
switches to the next most important direction and so on.

4. Emphasis on input directions with large uncertainty, even
those that have zero effect to the output.
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2. Maximizing the x,y mutual information

Maximizing the entropy transfer or mutual information between
the input and output variables, when a new sample is added:

I(x, y|D′) = Ex + Ey |D′ − Ex ,y |D′ .

We have:

Ex ,y (h) =
"

y

"

x
fxy (y, x|D′) log fxy (y, x|D′)

=

"

x
Ey |x(x|D′) fx(x) +

"

x
fx(x) log fx(x)

= Ex [Ey |x(D′)] + Ex .
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2. Maximizing the x,y mutual information

Given a new input point xN+1 = h, we have at any input x

p(y|x,D′,V) = N (SyxS−1
xx x,V(1 + c)),

c = xT S′−1
xx x,

Therefore,

I(x, y|D′,V) = Ey (h)−
d
2
Ex [log(1 + c(x;h))]− 1

2
log |2πeV|

Note 1: Valid for any distribution fx
Note 2: Hard to compute for high dimensions
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2. Maximizing the x,y mutual information
Gaussian approximation

The Gaussian approximation of the entropy criterion:

IG(x, y|D′,V) =
1
2
log |V(1 + µc(h)) + SyxS−1

xx CxxS−1
xx ST

yx |

− 1
2
log |V|− d

2
Ex [log(1 + c(x;h))],

Note 1: The effect of Y appears only through a single
scalar/vector and with no coupling on the new point h.

Note 2: Asymptotically (i.e. for small σ2
c ) the criterion becomes

IG(x, y|D′) =
1
2
log |I + V−1SyxS−1

xx CxxS−1
xx ST

yx |−
#

d − tr [[V + SyxS−1
xx CxxS−1

xx ST
yx ]

−1V]
$ µc(h)

2
+O(µ2

c)
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3. Output-weighted optimal sampling

Let y0 be the rv defined as the mean model:

y0 ≜ SyxS−1
xx x

We define the perturbed model:

y+ ≜ SyxS−1
xx x + βrV (1 + xT S′−1

xx x),

where β is a scaling factor to be chosen later and rV the most
dominant eigenvector of V.

We define the distance (Mohamad & Sapsis, PNAS, 2018)

DLog1(y+‖y0;h) =
"

Sy

| log fy+(y;h)− log fy0(y)|dy

where Sy is a finite sub-domain of y.
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3. Output-weighted optimal sampling

We can show that for bounded pdfs:

DKL(y+‖y0;h) " κDLog1(y+‖y0;h),

where κ is a constant. DLog1 is more conservative compared
with the KL divergence.

Significantly improved performance in terms of
convergence for fy .
Criterion DLog1(y+‖y0) is hard to compute/optimize.
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3. Output-weighted optimal sampling

Under appropriate smoothness conditions standard inequalities
for derivatives of smooth functions give (Sapsis, Proc Roy Soc
A, 2020):

limβ→0DLog1(y+‖y0;h) ≤ κ0

"
fx(x)

fy0(y0(x))
σ2

y (x;h)dx.
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3. Output-weighted optimal sampling

We define the output-weighted model error criterion

Q[h] ≜
"

fx(x)
fy0(y0(x))

σ2
y (x;h)dx.

1 Model error weighted according to the importance
(probability) of the input

2 Model error inversely weighted according to the probability
of the output: emphasis is given to outputs with low
probability (rare events)

Relevant criterion (Verdinelli & Kadane, 1992)

U(D′) = q1

"
y0(x).1dx + q2Exy |D′ .
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3. Output-weighted optimal sampling
Approximation of the criterion

Q[σ2
y ] ≜

"
fx(x)

fy0(y0(x))
σ2

y (x;h)dx.

Denominator approximation in Sy for symmetric fy and scalar y

f−1
y0

(y) ≃ p1 + p2(y − µy )
2,

where p1, p2 are constants chosen so that m.s. error is min

We employ a Gaussian approximation for fy0 (only for this step)
and over the interval Sy = [µy , µy + βσy ] we obtain

p1 =
√

2πσy and p2 =
5
√

2π
β5σy

%" β

0
z2e

z2
2 dz − β3

3

&

17 / 46



3. Output-weighted optimal sampling
Approximation of the criterion

We collect all the computed terms and obtain (for Gaussian x)

Qβσy (h)
1
σ2

V
= p1(β)(1 + tr [S′−1

xx Cxx ] + µT
x S′−1

xx µx)

+ p2(β)c0(1 + µT
x S′−1

xx µx − tr [S′−1
xx Cxx ])

+ 2p2tr [S−1
xx ST

yxSyxS−1
xx CxxS′−1

xx Cxx ].

For zero mean input we have

Qβσy (h)
1
σ2

V
= (p1 − p2c0)tr [S′−1

xx Cxx ]

+ 2p2tr [S′−1
xx Cxx0S−1

xx ST
yxSyxS−1

xx Cxx ] + const.
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3. Output-weighted optimal sampling
Gradient of the criterion

For general functions of the form

λ[h] = tr [S′−1
xx C],

where C is a symmetric matrix. The gradient takes the form

∂λ

∂hk
= −2hT S′−1

xx CS′−1
xx .
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Example 1: 2-dimensional input

ŷ(x) = â1x1+â2x2+ε, where x ∼ N (0,
'
σ2

1 0
0 σ2

2

(
) and σ2

V = 0.05.

Case I : â1 = 0.8, â2 = 1.3, and σ2
1 = 1.4,σ2

2 = 0.6.
Case II: â1 = 0.01, â2 = 2.0, and σ2

1 = 2.0,σ2
2 = 0.2.
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Results for the 2D problem
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Example 2: A 20-dimensional input

ŷ(x) =
20!

m=1

âmxm + ε, where xm ∼ N (0,σ2
m), m = 1, ..., 20,

âm =

%
1 + 40

# m
10

$3
&

10−3, m = 1, ..., 20,

σ2
m =

%
1
4
+

1
128

(m − 10)3
&

10−1, m = 1, ..., 20.

For the observation noise we consider two cases:
Case I: σ2

ε = 0.05 (accurate observations)
Case II: σ2

ε = 0.5 (noisy observations)
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Example 2: A 20-dimensional input

Coefficients, α̂m, of the map ŷ(x) (black curve) plotted together with the variance of

each input direction σ2
m (red curve).
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Example 2: A 20-dimensional input

Performance of the two adaptive approaches based on µc and Q∞.
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Example 2: A 20-dimensional input

Energy of the different components of h with respect to the number of iteration N for

Case I of the high dimensional problem.

25 / 46



Optimal sampling for nonlinear regression

Let the input x ∈ X ⊂ Rm, be expressed as a function of
another input z ∈ Z ⊂ Rs where the input value has distribution
fz and Z be a compact set.

We choose a set of basis functions

x = φ(z).

The distribution of the output values will be

p(y|z,D,V) = N (SyφS−1
φφφ(z),V(1 + c)),

c = φ(z)T S−1
φφφ(z),

Sφφ =
N!

i=1

φ(zi)φ(zi)
T
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Example 3: A nonlinear map

ŷ(z) = â1z1 + â2z2 + â3z3
1 + â4z3

2 + ε,

where

x ∼ N (0,
'
σ2

1 0
0 σ2

2

(
) and σ2

V = 10−4

Two cases of parameters
â1 = 10−2, â2 = 5, â4 = 102, σ2

1 = 2.10−1,σ2
2 = 5.10−3

â1 = 10, â2 = 5, â4 = 102, σ2
1 = 2.10−3,σ2

2 = 5.10−3

The basis functions are chosen as

φ(z) = z i
1z j

2, (i , j) ∈ {(0, 1), (1, 0), (1, 1), (0, 3), (3, 0)}
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Example 3: A nonlinear map

Exact pdf for the two cases of the nonlinear map using MC with 105 samples.
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Example 3: A nonlinear map

Performance of the two adaptive approaches based on µc and Q∞ for the nonlinear

problem.
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Example 3: A nonlinear map

Performance of the two adaptive approaches based on µc and Q∞ for the nonlinear

problem and Case I parameters.
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Example 4: Rare events in a stochastic oscillator

ü + δu̇ + F (u) = ξ(t), t ∈ [0,T ]

The stochastic excitation is a parametrized by a KL expansion:

ξ(t) ≈ xΦ(t), x ∼ N (0,Λ)

The quantity of interest is the mean displacement

f (x) =
1
T

! T

0
u(t ; x) dt

Objective function Input pdf Output pdf
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Quantifying rare events in a stochastic oscillator

e(n) =
!

| log py (µ)− log py (f )| dy

Benchmark results for the stochastic oscillator with σ2
ε = 0 (left) and σ2

ε = 10−3 (right)

US: Uncertainty sampling: minxσ
2(x); US-LW: minx w(x)σ2(x);

IVR: Integrated Variance Reduction-Input Weighted (IVR-IW): µc (x); IVR-LW: Q−criterion.
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Example 4: Rare events in a stochastic oscillator

µc (Input-weighted variance) Q− criterion

The output-weighted criterion targets “relevant” regions more
efficiently
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Bayesian Optimization: Problem setup

x ∈ X ⊂ Rm : Input parameters

Minimize y = f (x) ∈ R

Starting from a set of ninit input-output pairs goal is to
construct a surrogate of f and its global minimum
Ingredient 1: surrogate model (here GPR)
Ingredient 2: acquisition function
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Acquisition functions for BO and BED

Pure exploration:

Uncertainty Sampling a(x) = −σ2(x)

Integrated Variance Reduction a(x) = −
!

X
cov2(x, x′)dx′/σ2(x)

Exploration–exploitation trade-off (B. Shahriari et al., IEEE 2015)

BO-Repurposed IVR a(x) = µ(x) + κaIVR(x)
Lower Confidence Bound a(x) = µ(x)− κσ(x)

Probability of Improvement a(x) = −Φ(λ(x))
Expected Improvement a(x) = −σ(x) [λ(x)Φ(λ(x))− φ(λ(x))]

where λ(x) = (y∗ − µ(x)− ξ)/σ(x)
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The role of the likelihood ratio in BO and BED

w(x) =
px(x)

py (µ(x))
≈

nGMM"

i=1

αi N (x;ωi ,Σi)

2-D Michalewicz function

The likelihood ratio

acts as a probabilistic sampling weight

emphasizes the most relevant regions of the input space

can be approximated by a small number of Gaussian mixtures
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Acquisition functions for BO and BED

w(x) =
px(x)

py (µ(x))

Pure exploration:

Uncertainty Sampling a(x) = −σ2(x)w(x)

Integrated Variance Reduction a(x) = −
!

X
cov2(x, x′)w(x) dx′/σ2(x)

Exploration–exploitation trade-off :

BO-Repurposed IVR a(x) = µ(x) + κaIVR(x)
Lower Confidence Bound a(x) = µ(x)− κσ(x)w(x)

Probability of Improvement a(x) = −Φ(λ(x))
Expected Improvement a(x) = −σ(x) [λ(x)Φ(λ(x))− φ(λ(x))]

where λ(x) = (y∗ − µ(x)− ξ)/σ(x)
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BO with output-weighted acquisition functions

ℓ(n) = min
k∈[0,n]

‖xtrue − x∗
k‖2 r(n) = min

k∈[0,n]
f (x∗

k )− ytrue

Benchmark results for 2-D Michalewicz function (distance to min and simple regret)

EI: Expected Improvement −σ(x) [λ(x)Φ(λ(x)) − φ(λ(x))], PI: Probability of Improvement −Φ(λ(x)),
IVR: integrated Variance Reduction −

!
X cov2(x, x′) dx′/σ2(x), IVR-BO: µ(x) + κaIVR (x),

LCB: Lower Confidence Bound µ(x) − κσ(x), LW: Likelihood weighted: w(x).
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BO with output-weighted acquisition functions

ℓ(n) = min
k∈[0,n]

‖xtrue − x∗
k‖2 r(n) = min

k∈[0,n]
f (x∗

k )− ytrue

Benchmark results for 6-D Hartmann function (distance to min and simple regret)

EI: Expected Improvement −σ(x) [λ(x)Φ(λ(x)) − φ(λ(x))], PI: Probability of Improvement −Φ(λ(x)),
IVR: integrated Variance Reduction −

!
X cov2(x, x′) dx′/σ2(x), IVR-BO: µ(x) + κaIVR (x),

LCB: Lower Confidence Bound µ(x) − κσ(x), LW: Likelihood weighted: w(x).
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Finding extreme-event precursors by optimal sampling
For a dynamical system with flow map St and observable G:

assign to each initial condition x0 a measure of dangerousness,

F : Rd −→ R
x0 '−→ max

t∈[0,τ ]
G(St(x0))

use the sampling algorithm to probe the initial-condition space

perform search in PCA space with Gaussian prior px(x)

⌧ ⌧ Time

O
b
s
e
r
v
a
b
le

Instability regions

Regular
dynamics

Extreme events

Computation of extreme-event precursors in Gaussian PCA subspace
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Finding extreme-event precursors by optimal sampling

r(n) = min
k∈[0,n]

f (x∗
k ) ro(n) = min

yi∈Dn
yi

EI: Expected Improvement −σ(x) [λ(x)Φ(λ(x)) − φ(λ(x))], PI: Probability of Improvement −Φ(λ(x)),
IVR: integrated Variance Reduction −

!
X cov2(x, x′) dx′/σ2(x), IVR-BO: µ(x) + κaIVR (x),

LCB: Lower Confidence Bound µ(x) − κσ(x), LW: Likelihood weighted: w(x).
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The Brachistochrone problem

f (x) = log(T (x)− tc)

T (x) Travel time for given parametrization x
tc Best travel time possible (cycloid)
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The Brachistochrone problem

ro(n) = min
yi∈Dn

yi r(n) = min
k∈[0,n]

f (x∗
k )− ytrue

EI: Expected Improvement −σ(x) [λ(x)Φ(λ(x)) − φ(λ(x))], PI: Probability of Improvement −Φ(λ(x)),
IVR: integrated Variance Reduction −

!
X cov2(x, x′) dx′/σ2(x), IVR-BO: µ(x) + κaIVR (x),

LCB: Lower Confidence Bound µ(x) − κσ(x), LW: Likelihood weighted: w(x).
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Informative path planning for terrain exploration

A UAV is tasked with reconstructing a terrain elevation map f (x)

The unknown terrain First (random) iteration After 11 iterations

Next best destination:

x∗
f = argmin

xf

!

S(xc ,xf )

a(x(s)) ds

where S(xc , xf ) is the shortest Dubins curve from xc to candidate xf
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Reconstruction of strongly anomalous terrain
The Ackley function

The Michalewicz function

US: Uncertainty sampling: minxσ
2(x); US-LW: minx w(x)σ2(x);

IVR: Integrated Variance Reduction-Input Weighted (IVR-IW): µc (x); IVR-LW: Q−criterion.
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Conclusions

Samples based on maximum mutual information or
minimum model error do not effectively take into account
the contribution to the output.
A new criterion allows for sampling of points in regions that
have important influence to the output.
The criterion can be approximated analytically so that we
can apply it to high dimensional parameter spaces.
Application to risk quantification and optimization

Sapsis, Output-weighted optimal sampling for Bayesian regression and rare event
statistics using few samples, Proceedings of the Royal Society A, (2020).

Blanchard & Sapsis, Bayesian optimization with output-weighted importance sampling,
arXiv, (2020).
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